
gLExec and MyProxy integration in the

ATLAS/OSG PanDA Workload Management System

J. Caballero1, J. Hover1, M. Litmaath2, T. Maeno1, P. Nilsson3, M.

Potekhin1, T. Wenaus1, X. Zhao1

1 Brookhaven National Laboratory, PO BOX 5000 Upton, NY 11973, USA
2 CERN, CH-1211 Geneva 23, Switzerland
3 University of Texas, 701 S. Nedderman Drive Arlington, TX 76019, USA

E-mail: jcaballero@bnl.gov

Abstract.

Worker nodes on the grid exhibit great diversity, making it difficult to offer uniform
processing resources. A pilot job architecture, which probes the environment on the remote
worker node before pulling down a payload job, can help. Pilot jobs become smart wrappers,
preparing an appropriate environment for job execution and providing logging and monitoring
capabilities. PanDA (Production and Distributed Analysis), an ATLAS and OSG workload
management system, follows this design. However, in the simplest (and most efficient) pilot
submission approach of identical pilots carrying the same identifying grid proxy, end-user
accounting by the site can only be done with application-level information (PanDA maintains
its own end-user accounting), and end-user jobs run with the identity and privileges of the proxy
carried by the pilots, which may be seen as a security risk. To address these issues, we have
enabled PanDA to use gLExec, a tool provided by EGEE which runs payload jobs under an
end-user’s identity. End-user proxies are pre-staged in a credential caching service, MyProxy,
and the information needed by the pilots to access them is stored in the PanDA DB. gLExec
then extracts from the user’s proxy the proper identity under which to run. We describe the
deployment, installation, and configuration of gLExec, and how PanDA components have been
augmented to use it. We describe how difficulties were overcome, and how security risks have
been mitigated. Results are presented from OSG and EGEE Grid environments performing
ATLAS analysis using PanDA and gLExec.

1. Introduction

The LHC (Large Hadron Collider)[1] is the next-generation particle accelerator/collider located
at CERN (European Organization for Nuclear Research). It has been constructed by an
international consortium in a 17-mile circumference tunnel beneath Switzerland and France.
Four experiments have built massive detectors at four locations on the accelerator ring to
record the showers of sub-atomic particles that result from collisions. ATLAS (A Toroidal
LHC ApparatuS)[2] is one of these experiments.

The ATLAS detector, like the other LHC detectors, produces raw data in such quantities
that storage and processing on site at CERN is impractical. Consequently, ATLAS has adopted
a multi-tiered data storage and analysis model based on distributed, Grid computing[3]. Raw
data is divided up and transferred via the Internet to several Tier-1 sites around the world,
where it is placed on disk and stored permanently to tape. There, and at Tier-2 (and Tier-3)



sites it undergoes initial and subsequent rounds of processing and analysis on large computing
clusters (typically rack-mounted commodity Linux systems).

All these computing sites are affiliated with Grids. In Europe, both the EGEE (Enabling
Grids for E-sciencE)[4] and NDGF (Nordic DataGrid Facility)[5] projects provide the software
and administrative infrastructure for making this distributed computing possible. In the
U.S., OSG (Open Science Grid)[6] serves this purpose. Together, EGEE, NDGF and OSG
have coordinated their activities in service of the LHC experiments’ needs under the WLCG
(Worldwide LHC Computing Grid) organization.

The ATLAS processing and analysis tasks are defined as distinct jobs, which are submitted
to dozens of computing sites via their Grid interfaces. In this model, it is critical that jobs be
dispatched to the location where the data on which it will operate already resides, since data
transfer is very bandwidth-intensive while job submission is not.

To meet ATLAS requirements for a data-driven workload management system for production
and distributed analysis processing capable of operating at LHC data processing scale the PanDA
(Production and Distributed Analysis) system has been developed built upon the pilot-based
framework, as described in [7]. It includes an important subsystem (the pilot scheduler) that
manages the delivery of pilot jobs to worker nodes via a number of scheduling systems. Once
launched on a worker node (WN), the pilot process contacts the job dispatcher and receives an
available job matched to the site resources and characteristics, combined with brokerage policies.

PanDA was initially developed for US based ATLAS production and analysis, and assumed
that role in late 2005. Since September 2006 PanDA has also been a principal component of the
US Open Science Grid (OSG) program in just-in-time (pilot-based) workload management. In
October 2007 PanDA was adopted by the ATLAS Collaboration as the sole system for distributed
processing production across the Collaboration.

Despite the clear advantages of a pilot jobs architecture, making the working environment
more homogeneous and isolating the job execution from the potential heterogeneities, there is
an inherent security risk in the fact that the jobs inherit the identity of the user who originally
submitted the pilot jobs to target sites. Accordingly, all end-user jobs will then possess the same
identity and the same privileges granted by the proxy [8] carried by the pilots.

To address this security risk, the PanDA system has been given the capability to change the
user identity of the payload job (initially run as pilot) such that it corresponds to that of the
original job submitter. The change takes places based on the end-user credentials, previously
stored on a caching service from where they are retrieved by the pilot process running on the
WN. The mechanics of the identity switch are performed by gLExec. gLExec[9] is a super-user
privileged executable with the capability of modifying the UID and GID to provide for a mapping
between the grid user and the local Unix user accounts. This mapping is performed based on the
results from gLite LCAS and LCMAPS[10] security components. The component that we use to
perform the caching of the credentials is called MyProxy [11]. It is an open source application
for managing grid proxy credentials. The identity change, as described above, is an optional
feature of PanDA, which is employed only at sites which mandate its use. Such a condition is
reflected in the site metadata recorded in the PanDA server’s database.

2. Integration

2.1. Handling of the users proxies

The user proxies are handled in the following manner: in the distributed analysis scenario, when
the user submits a job to the PanDA system, the client software (pathena)[12] will check if the
user already has a proxy deposited on a dedicated MyProxy server, owned and managed by the
ATLAS organization, and that this instance has a sufficiently long remaining period of validity
(which is configurable). If that is not the case, the client will deposit a new user proxy onto the
MyProxy server. The users credentials are never cached in PanDA.



When this new proxy is delegated to the MyProxy server, the identity of the entities
authorized to retrieve it has to be specified. These identities are declared as a list of Distinguished
Names (DN) corresponding to the pilot job submitters. In this way it is assured no other users
than the authorized pilots will be allowed to retrieve the users’ proxies from the server. This
list of authorized retrievers is stored in the PanDA database, and read every time a new proxy
is delegated. This DN list is expected to be superseded by just the VOMS pilot role when the
MyProxy server supports this retrievers authentication and authorization mechanism.

In this scenario, the pilot job (and the pilot job only) has the credentials to extract the
concrete user’s proxy from the MyProxy server. This happens once the pilot connects to the
PanDA server and is ready to execute the end user job. Finally, to be able to perform the UID
and GID switch, the pilot identity must to be included in a super-user owned white list of users
allowed to invoke gLExec.

Working under the assumption that we limit the lifetime of the user’s proxy, the pilot job is
responsible for its periodic renewal during the job’s execution.

2.2. Security concerns and their mitigation

Possible security concerns related to misuse of a compromised pilot proxy are being addressed
as follows. An instance of the proxy being stored on the MyProxy server can be assigned a
unique key that will be required upon future retrieval. The key is stored on the PanDA server,
and is delivered to the pilot when the latter obtains a new job from the server. In the interest
of security, the key itself is a generated random string.

In addition, single (or few) use tokens will be used by the pilot job in order to get a payload
job from the server. The pilot will have to present the token to the PanDA server in the job
request process, and server has to match it to the value obtained from the database, where it was
stored during the pilot submission process. After validating the pilot, the server immediately
deletes the token (or decrements a maximum usage count).

The scheme described above helps to mitigate the few possible ways for an intruder to take
possession of a user’s proxy.

(i) To gain access to the PanDA database. We consider this level of security breach highly
unlikely as it involves intrusion of a few loosely coupled components, each with its own set
of credentials, and would require that all of these be simultaneously compromised. The
access to the database is closely guarded, and in addition, as described above, there is a
pre-requisite of having a valid pilot proxy in order to extract the user proxy.

(ii) To directly penetrate the Worker Node and impersonate pilot jobs. In case a Worker Node
is compromised during a limited period (say a few hours or days), the attacker might try
and imitate the pilot(s), requesting a series of jobs to obtain their associated user proxies,
but the constraints on the token reuse ensure that for a given pilot any such abuse can
only affect a small number of users. The attacker might kill the pilot itself, so that another
job with another proxy (and possibly a token) gets started, but such an attack in itself is
not specific to pilot-based workload management systems and thus is amenable to standard
security measures. A similar scenario is one of abnormal job termination (such as when
killed by the batch system or due to a power cut), whereby the proxy cached on the worker
node is not immediately destroyed. Note, however, that to gain access to such a proxy one
needs to possess the identity of the pilot job, which reduces the likelihood of such threats.

(iii) To gain direct access to the pilot job scheduler. This kind of threat is not unique in
that there are already components in the grid infrastructure which, if compromised, could
provide the intruder with credentials of multiple users. Such a risk is minimized by having
a very small number of machines performing this task, together with establishing a strict
control over access to these. Indeed, this is exactly the current practice.



3. Execution

To help define and secure the privileges and access rights of the pilot job, we are using the
VOMS system [13]. The pilot job is started by a privileged user (who has the VOMS pilot
role annotation), whose rights in this case are limited to being able to utilize gLExec. This is
achieved by mapping the user (based on the aforementioned VOMS annotation contained in the
proxy) to an account for which gLExec is explicitly configured and limiting other types of access
for this account as necessary (cf. the difference between pilot and production roles).

The gLExec utility is activated and uses the user’s proxy obtained from the MyProxy server.
Effectively, each task is sandboxed by being executed under the end user account to which the
user’s proxy is mapped, with privileges limited to those of that account and proxy.

The identity switch via gLExec leads to each user’s processes running under specific UIDs
traceable to their respective identities. At the PanDA level, the DN of the job submitter is
recorded permanently for each PanDA job, such that PanDA can trace and account usage.

When the retrieved credentials do not carry VOMS attributes, or they have expired, they
need to be (re)added on the worker node by invoking the VOMS client. It is preferable that the
delegated credentials already include the desired VOMS attributes (even if expired) to avoid an
improper escalation of VOMS privileges in case a credential is compromised.

Any error during the execution of the payload is propagated back to the central data base,
and reported through the PanDA monitoring web interface. The report includes both an error
code and a meaningful message.

Finally, once the payload has been executed and the running process returns back to the
pilot, the retrieved credentials are deleted from the local disk.

3.1. Issues related to the identity switch

Several issues surround the identity switch. The first one is that the running process is
automatically assigned a home directory according to the new UID, and moved to it. The
location and properties of this directory depend on the particular configuration and policies of
the local batch system. The directory does not contain the files prepared by the pilot. The
PanDA gLExec interface records the location of the working area and the first action after the
identity switch is to go back to the pilot working area.

The properties of this pilot working area may vary depending of the local batch system.
However, it is common that this directory and possibly a number of leading directories belong
exclusively to the pilot. This implies the switched identity may not be allowed to create new files
underneath this path, or even execution could be prohibited. To avoid this difficulty the PanDA
gLExec interface changes the UNIX permissions of the working directory before performing
the change of identity to allow the new one to execute and write. The original set of UNIX
permissions is recorded and reestablished just after the gLExec invocation.

Another important issue is that the whole pilot environment effectively ”vanishes” when
the identity changes. This environment contains relevant pieces for the execution like the
location of the libraries and similar information. The implemented solution consists of the
reconstruction of the whole set of environment variables before continuing with the activities.
An intermediate wrapper is created dynamically by the pilot, with the complete list of variables.
This intermediate wrapper is the application run under gLExec. After the proper environment
is thus recreated, the payload is finally executed from this wrapper.

In parallel, a second process is launched to renew the end user credentials periodically from
the MyProxy server in case their life time is shorter than the payload execution duration.

3.2. Issues related to data movement

The payload execution can be seen as composed of three steps: input files stage-in, the user job
execution, and output files stage-out. Whether to perform the three steps under the end user



identity or just the calculation part, while leaving the pilot to deal with the data movement,
will depend on the policies of each site. We have made provisions to enable the PanDA gLExec
interface to operate properly in both scenarios.

4. Deployment

The most important requirement to follow (by design) in order to deploy gLExec in an Identity-
mapping model is that the installation has to be entirely local. No files can reside on distributed
file systems. The executable and configuration files have to be owned by the superuser.

Deployment of gLExec in OSG sites requires also worker nodes to have a host certificate, which
is used in the call to GUMS[14] to get the mapping. In this way, the communication between
the client and the GUMS server is secured with the client host certificate. The subject of this
certificate also indicates the worker node for which the possibly host-dependent mapping is to be
determined. This certificate location is specified in /etc/glexec/contrib/gums/gums interface.

Other components to be installed and deployed on the worker nodes to achieve all steps
described are the VOMS client configuration (a ”vomses” file or directory) and the MyProxy
client software to allow the user credentials retrieval.

When a given site protects its network traffic with firewalls, communication between the
worker node and the MyProxy server may not be allowed. In these cases a proxy service has
to be deployed within the site boundary, the name of the MyProxy service points to this inner
proxy, which redirects the communication to the real MyProxy server instance.

In practice, gLExec has been deployed and successfully tested on several OSG sites in the US
(Brookhaven National Laboratory, Fermi National Laboratory and SLAC National Accelerator
Laboratory). and a dedicated MyProxy server has been installed at Brookhaven National
Laboratory.

The deployment of gLExec on the EGEE infrastructure is closely tied to the deployment of
SCAS, the Site Central Authorization Service, which decides and records the mappings of proxies
presented by gLExec to ensure that all worker nodes at the site map a given proxy the same
way. The combined deployment of gLExec and SCAS has entered the limited preproduction
stage on April 27 and is expected to reach the full production stage still in the spring of 2009.
In parallel there have been a few production sites that have made gLExec and SCAS available
as an experimental service, allowing ATLAS and other LHC experiments to develop and test
the adaptation of their middleware to gLExec. It may be a few months before all EGEE sites
relevant to ATLAS will have upgraded and enabled gLExec as desired. In the meantime PanDA
would make use of gLExec where it is available.

Acknowledgments

The authors would like to thank Jim Basney (NCSA/OSG), Oscar Koeroo, Gerben Venekamp
and David Groep (NIKHEF) for their constant support, feedback and assistance that made this
project possible. We are also grateful to the site administrators at the sites in both the EGEE
and OSG Grid projects for their effort with software installation and configuration, as well to the
EGEE team in charge of the gLExec/SCAS deployment (Antonio Retico and Gianni Pucciani).
This work was supported by the US Department of Energy and National Science Foundation,
and managed by the Open Science Grid Consortium.

References
[1] LHC Computing Grid Project http://www.cern.ch/lcg/
[2] ATLAS Collaboration 1994 ATLAS Technical Proposal CERN/LHCC/94-43
[3] Foster I, Kesselman C and Tuecke S 2001 The Anatomy of the Grid: Enabling Scalable Virtual Organizations

International J. Supercomputer Applications 15(3)
[4] Enabling Grids for E-sciencE http://www.eu-egee.org/
[5] Nordic DataGrid Facility http://www.ndgf.org/ndgfweb/home.html



[6] Open Science Grid http://www.opensciencegrid.org/
[7] Nilsson P, Caballero J, De K, Maeno T, Potekhin M and Wenaus T 2008 The PanDA system in the ATLAS

experiment Accepted for publication in PoS, Proceedings of ACAT 2008 Conference.
[8] Tuecke S, Welch V, Engert D, Pearlman L and Thompson M Internet X.509 Public Key Infrastructure (PKI)

Proxy Certificate Profile RFC 3820
[9] Groep D, Koeroo O and Venekamp G 2008 gLExec: gluing grid computing to the Unix world J. Phys.: Conf.

Series 119 062032
[10] Groep D, Koeroo O and Venekamp G Grid Site Access Control and Credential Mapping to the Unix domain

Nikhef PDP Technical Report http://www.nikhef.nl/grid/lcaslcmaps/
[11] Basney J, Humphrey M and Welch V 2005 The MyProxy Online Credential Repository Software: Practice

and Experience 35, Issue 9 801-16.
[12] pAthena https://twiki.cern.ch/twiki/bin/view/Atlas/PandaAthena
[13] Virtual Organizations Membership Service (VOMS) http://www.globus.org/grid software/security/voms.php
[14] Hover J, Packard J et al 2004 Grid User Management System (GUMS)

https://www.racf.bnl.gov/Facility/GUMS/1.3/index.html


